Effect of acupuncture treatment for weight loss on gut flora in patients with simple obesity

INTRODUCTION
Acupuncture is used in the management of obesity, but the mechanisms of its action are not known. We explored the effect of abdominal acupuncture treatment on body mass index (BMI) and on intestinal flora.

MATERIALS AND METHODS
The study was approved by the Ethics Committee of Shanghai Eighth Hospital. Informed consent was obtained, and the study was based on the STAndards for Reporting Interventions in Controlled Trials of Acupuncture (STReICTA) guidelines.1

A total of 45 cases, all women, were invited from the specialist clinic for simple obesity using acupuncture at Shanghai Eighth Hospital. Cases were randomly divided into one of 3 groups: 2 treatment groups and 1 control group (15 cases each). The women ranged between 29–63 years in age, mean age 48.8±SD 13.3 years. Patients were included if they had BMI≥242 with no endocrine or metabolic cause. Patients with complications or who failed to complete treatment were withdrawn. Exclusion criteria were: pregnancy or lactation; serious heart, liver, kidney, brain conditions and other serious complications of other primary diseases, mental illness, courses of antibiotics, etc.

The control group had no treatment. No dietary interventions were given for any patients. The patients in the two treatment groups were treated with acupuncture by two senior doctors, respectively, using the same points and approach. Treatment was given using abdominal and body acupuncture points for all subjects. Points were selected from CV12, CV9, BL24, BL26, ST28 and ST25, together with ST36 and SP6. After routine skin disinfection, hypodermic needles were inserted 1.5 inch in the direction of the umbilicus (abdominal points), with rotation and some degree of lift and thrust. Needles were retained for 30 min, and at 10 min and 20 min were manipulated gently. The treatment was given once every other day, 20 times for a course. The changes of BMI and faecal microbial flora in each group before and after one course were observed and recorded.

Samples for bacteriological examination were analysed by isolation and routine culture, blinded to group allocation.

Statistical analysis
The data were analysed using SPSS V12.0 software (SPSS, Chicago, Illinois, USA). Bacteria colony-forming units (cfu) were presented as geometric averages. The total cfu value for each sample was presented as a log phase to accommodate the normal distributions. The intergroup comparison of geometric average of cfu of all bacteria was compared using two-way analysis of variance (ANOVA) analysis and Bonferroni method. Bacterial counts were compared by means of paired testing Student’s t test.

RESULTS
The BMI values of the two treatment groups decreased significantly after treatment (p<0.05): from 27.63±1.26 to 25.38±1.47 and from 27.76±1.12 to 25.27±1.03, respectively. Mean BMI for the control group was 27.52±1.02 (before treatment) and 27.16±1.09 (after treatment). There was no significant difference between the treatment groups (p>0.05).

As shown in table 1, in both treatment groups, Lactobacillus and Bifidobacterium increased after treatment but Bacteroides and Clostridium perfringens (treatment group 1 only) decreased (p<0.05). In the control group there were no statistical significant changes (p>0.05).

Table 1 Gut microbiota in the log colony-forming units per/ml (logXG±SD) from obese of treatment and control group

<table>
<thead>
<tr>
<th>Type of bacteria</th>
<th>Treatment group 1 Before</th>
<th>After</th>
<th>Treatment group 2 Before</th>
<th>After</th>
<th>Control group Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total aerobic</td>
<td>8.32±0.63</td>
<td>10.66±2.39</td>
<td>7.44±0.29</td>
<td>11.35±1.08</td>
<td>7.49±0.86</td>
<td>8.43±0.75</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>2.86±0.58</td>
<td>4.97±0.36*</td>
<td>2.13±0.98</td>
<td>5.37±0.25*</td>
<td>2.41±0.30</td>
<td>3.06±0.82</td>
</tr>
<tr>
<td>Actinobacterium</td>
<td>5.59±1.41</td>
<td>6.42±1.29</td>
<td>4.33±1.84</td>
<td>6.67±1.30</td>
<td>6.69±1.72</td>
<td>5.83±1.36</td>
</tr>
<tr>
<td>Total anaerobic</td>
<td>48.25±14.13</td>
<td>40.67±12.06</td>
<td>50.45±17.14</td>
<td>38.46±11.13</td>
<td>45.34±15.39</td>
<td>41.74±15.63</td>
</tr>
<tr>
<td>Escherichia</td>
<td>7.16±0.42</td>
<td>6.42±0.78</td>
<td>7.43±0.65</td>
<td>5.35±0.27</td>
<td>6.28±0.56</td>
<td>7.57±0.13</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>6.02±0.96</td>
<td>7.26±0.35</td>
<td>6.92±0.27</td>
<td>7.73±0.18</td>
<td>6.34±0.67</td>
<td>6.21±0.89</td>
</tr>
<tr>
<td>Bilobodobacterium</td>
<td>9.26±0.38</td>
<td>11.47±2.93*</td>
<td>8.49±0.66</td>
<td>12.50±2.65*</td>
<td>8.61±0.40</td>
<td>10.47±0.08</td>
</tr>
<tr>
<td>Bacteroides</td>
<td>29.85±7.30</td>
<td>14.92±2.85*</td>
<td>32.51±9.37</td>
<td>16.35±4.22*</td>
<td>30.57±7.48</td>
<td>25.23±8.84</td>
</tr>
<tr>
<td>Faecalibacterium</td>
<td>7.17±0.48</td>
<td>6.81±1.72</td>
<td>6.80±0.75</td>
<td>5.34±1.67</td>
<td>7.68±0.46</td>
<td>6.18±0.54</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>3.58±0.97</td>
<td>1.60±0.33*</td>
<td>2.47±0.61</td>
<td>2.39±0.56</td>
<td>2.89±1.71</td>
<td>2.02±0.63</td>
</tr>
<tr>
<td>Clostridium botulinum</td>
<td>1.92±0.83</td>
<td>1.24±0.59</td>
<td>1.36±0.82</td>
<td>1.47±0.05</td>
<td>1.53±0.14</td>
<td>1.66±0.72</td>
</tr>
<tr>
<td>Eubacterium</td>
<td>3.51±0.28</td>
<td>3.64±0.96</td>
<td>2.96±0.87</td>
<td>2.51±0.29</td>
<td>3.63±0.45</td>
<td>3.25±0.70</td>
</tr>
</tbody>
</table>

*statistical significant difference between the groups before and after treatment (p>0.05).

Received 13 July 2012
Revised 5 August 2012
Accepted 14 August 2012
Published Online First 8 September 2012

Zhuting Xu,1 Ruifen Li,1 Cailian Zhu,2 Mingyu Li2
1Department of Traditional Chinese Medicine, Shanghai Eight People’s Hospital, Shanghai, People’s Republic of China
2Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Ninth People’s Hospital, Medical College, Shanghai Jiao Tong University, Shanghai, People’s Republic of China

Correspondence to Dr Mingyu Li, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Ninth People’s Hospital, Medical College, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China; lmy1691@hotmail.com

Contributors ZX and RL were responsible for the majority of the study design, bench work and data analysis. CZ participated in the clinical sample collection and statistical analysis, and also contributed to the interpretation of the final results. ML participated in the study design, data interpretation and helped draft the manuscript. All authors read and approved the final manuscript.

Competing interests None.

Ethics approval The study was approved by the Ethics Committee of Shanghai Eight People’s Hospital.

Provenance and peer review Not commissioned; internally peer reviewed.

REFERENCES

Effect of acupuncture treatment for weight loss on gut flora in patients with simple obesity
Zhuting Xu, Ruifen Li, Cailian Zhu and Mingyu Li

Acupunct Med 2013 31: 116-117 originally published online September 8, 2012
doi: 10.1136/acupmed-2012-010209

Updated information and services can be found at:
http://aim.bmj.com/content/31/1/116

These include:

References
This article cites 6 articles, 1 of which you can access for free at:
http://aim.bmj.com/content/31/1/116#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://www.bmj.com/company/products-services/rights-and-licensing/

To order reprints go to:
http://journals.bmj.com/content/subscribers

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/