The Clinical and Physiological Foundation of Auricular Acupuncture Therapy in Patients with Hypertensive Disease

P Ja Gaponjuk, T Ju Sherkovina

This paper was presented at the ICMART Symposium held at Bath in May 1993

Summary
The haemodynamic influence of each of 16 pairs of auricular acupuncture points was studied in 104 hypertensive patients who were classed according to circulation type. Changes in heart rate, stroke output and peripheral vascular resistance were measured, so that the degree of change could be charted for each acupuncture point. It became clear that certain groups of ear points induced a fall in blood pressure by influencing change in one or more of these cardiac parameters.

The ear has a particularly rich nerve supply derived from several cranial and upper cervical nerves and it is possible to explain the hypotensive action of specific groups of acupuncture points by reference to their innervation. The most effective auricular acupuncture points for hypertensive patients of each circulation type can thus be accurately predicted.

Key words
Acupuncture, Auricular acupuncture, Hypertensive disease.

Introduction
The literature provides evidence for the therapeutic effect of acupuncture in treating patients with hypertensive disease (1-12). At the same time the choice of reflex zone for the acupuncture stimulation has not been finally established.

The aim of this study was to evaluate the haemodynamic response of hypertensive patients with different types of blood circulation, to acupuncture stimulation at specific auricular points.

The types of blood circulation were determined in accordance with haemodynamic normal values worked out at the AUCSC of the USSR Academy of Medical Sciences, taking into account the patient's age and sex. They were divided into Hyperkinetic, Hypokinetic and Eukinetic circulation, characterised as follows:

Hyperkinetic
Increased cardiac output (stroke and minute volumes), tachycardia
Normal to low peripheral vascular resistance
High systolic blood pressure

Hypokinetic
Decreased cardiac output (stroke and minute volumes), bradycardia
Increased general peripheral resistance
High diastolic arterial pressure, reduced pulse pressure
ECG: lowered ST segment and bifid or inverted T wave

Eukinetic
It is difficult to describe this type clinically.
Normal cardiac output
General peripheral vascular resistance slightly increased
High systolic and diastolic blood pressures
Normal type of body constitution
Hypertensive crises develop slowly, accompanied by sharp headache, nausea and vomiting, apathy, sleepiness, disorders of vision and hearing, sometimes bradycardia.

Using the hypertension classification of the World Medical Organisation, hypertensive disease is separated into stages I, II and III. Stage I is uncomplicated hypertension. Stage II shows evidence of left ventricular hypertrophy on X-ray and ECG, and
hypertensive ophthalmic fundal changes. Stage III shows symptoms of organic cardiovascular disease such as arteriosclerosis of the kidneys, heart and brain, and hypertensive damage to other organs. The hyperkinetic blood circulation type generally occurs in stages I and II. Hypokinetic and eukineti
type are usually found in stages II and III. None the
less, this division into circulation types is clinically
relative and a more precise definition can be obtained by the use of tetrapolar chest rheography.

Chest rheography (impedance cardiography) is a
non-invasive method of investigating the cardiovas-
cular system, in which the electrical resistance of
tissue (impedance) is measured in vivo (13). The
chest impedance changes according to the blood
flow during the cardiac cycle, thus measurement of
stroke volume and general peripheral vascular
resistance is possible. The use of four electrodes in
tetrapolar rheography, as described by Kubichek et
al. (14) and modified by Pushkar et al. (15), makes
measurement of cardiac indices more accurate. This
was the method we adopted.

Method

We studied 104 patients with hypertensive disease
Stage I-II with different types of blood circulation
and investigated the effects of 16 pairs of auricular
points: Brain, Subcortex, Sympathetic, Diaphragm,
Point of relaxation, Ren, Shenmen, Hypotensive,
Cor, Hypertension, Subren, Brain stem, Ear apex,
Lesser occipital nerve, Groove for lowering blood
pressure, Cardiac rhythm and Contractility zone.

Steel acupuncture needles were introduced to a
depth of 2-5mm. The duration of stimulation was
15min. The effectiveness of acupuncture at the
various points was evaluated by comparing the data
from tetrapolar chest rheography, using the Japanese
polygraph PM-6000, before and after needling.

Results

For patients with a hyperkinetic type of blood
circulation the following response was noted:

Acupuncture stimulation of the Apex point of the
ear reduced systolic pressure by an average 20mm
Hg. Stimulation of points Subcortex, Ren, Hyper-
tension, Brain stem and Groove for lowering
blood pressure reduced it by an average 13mm Hg,
and stimulation of other points by 10mm Hg. The
diastolic pressure decreased with stimulation of
points Ren, Point of relaxation, Cor, Hypertension,
and Ear apex by an average 8mm Hg, and all other
points tested by less than 7mm Hg.

In order to single out the most effective
acupuncture points for a particular haemodynamic
type, we carried out an analysis of the correlation
between cardiac output and the general peripheral
vascular resistance. We determined average changes
in blood pressure, cardiac output and peripheral
vascular resistance after stimulation, and the
numbers of patients that showed these changes
(Tables 1 and 2). Changes shown by less than three
patients are discounted and are not recorded in the

| **Table 1** | EFFECT OF EAR ACUPUNCTURE ON THE CARDIO-
| VASCULAR SYSTEM IN HYPERTENSIVE PATIENTS WITH A
| HYPERKINETIC CIRCULATION TYPE. |
|---|---|---|---|---|---|
| **Ear Points** | **Decrease in systolic blood pressure** | **Decrease in diastolic blood pressure** | **Decrease in cardiac output** | **Decrease in peripheral vascular resistance** | **Decrease in peripheral systolic resistance** |
| Ear apex | 14*(90) | 12*(60) | 22*(100) | 14*(70) | 7*(30) |
| Subcortex | 13*(80) | 10*(67) | 19*(100) | 14*(66) | - |
| Ren | 10*(80) | 10*(64) | 17*(90) | 10*(64) | 16*(27) |
| Point of relaxation | 11*(80) | 13*(70) | 13*(100) | 11*(60) | - |
| Brain stem | 9*(80) | 11*(64) | 11*(90) | 7*(55) | 6*(33) |
| Hypertension | 10*(80) | 12*(80) | 13*(80) | - | - |
| Groove for lowering | 8*(90) | 11*(62) | 11*(92) | 8*(55) | 12*(53) |
| Lesser occipital | 9*(60) | 11*(60) | 15*(80) | 18*(50) | 10*(40) |
| Hypotensive | 8*(80) | 8*(55) | 10*(90) | 6*(66) | - |
| Shenmen | 8*(90) | - | 18*(80) | 13*(67) | - |
| Sympathetic | 10*(55) | - | 14*(100) | 9*(90) | - |
| Cardiac rhythm and contractility zone | 8*(60) | 9*(30) | 20*(100) | 17*(80) | - |
| Subren | 3*(55) | 4*(55) | 17*(64) | 17*(36) | 9*(27) |
| Brain | 6*(70) | - | 13*(80) | 9*(70) | - |
| Diaphragm | 7*(55) | - | 15*(100) | 15*(90) | - |

* = p<0.05
- = Group of less than 3 patients
Brackets = Number of patients with the effect as a percent of the total group.
The decrease in their systolic blood pressure after stimulation of the Groove for lowering blood pressure point averaged 21 mm Hg; Ren, Cor, Cardiac rhythm and Contractility zone points averaged a fall of 16-18 mm Hg; Lesser occipital nerve, Ear apex, Hypertension, Brain stem and Brain 13-14 mm Hg; and the other points 11 mm Hg or less. The diastolic pressure decreased with stimulation of the Groove for lowering blood pressure, Cardiac rhythm and Contractility zone, Ear apex and Lesser occipital nerve points by 10-11 mm Hg; in other cases it fell by 9 mm Hg or less. Blood pressure falls, mainly due to a decrease in vascular resistance, were noted in 60-80% of patients after stimulation of the Groove for lowering blood pressure, Lesser occipital nerve, Ear apex, Cor, Ren and Cardiac rhythm and Contractility zone points. The ratio of the vascular resistance pre and post-treatment came to 11-16% (Table 2).

At the same time, stimulation of certain points (Diaphragm, Shenmen, Subcortex, Point of relaxation and Hypotensive) induces a fall in blood pressure in over half the patients by decreasing cardiac output through raising the peripheral vascular resistance. However, such a decrease in blood pressure cannot be called adequate or functional for this category of patients.

The group of patients with a eukinetic type of haemodynamics showed similar changes of their parameters.

For patients with the hypokinetic or eukinetic types of haemodynamics, the optimum points are those that cause a blood pressure fall through decreasing the peripheral vascular resistance. The following points meet these requirements: Groove for lowering blood pressure, Lesser occipital nerve, Ear apex, Cor, Ren and Cardiac rhythm and Contractility zone. Stimulation of the Brain point can be recommended additionally.

Table 2

<table>
<thead>
<tr>
<th>Ear Points</th>
<th>Percentage change after treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Decrease in systolic blood pressure</td>
</tr>
<tr>
<td>Groove for lowering blood pressure</td>
<td>12(75)</td>
</tr>
<tr>
<td>Ear apex</td>
<td>9(83)</td>
</tr>
<tr>
<td>Lesser occipital nerve</td>
<td>9(73)</td>
</tr>
<tr>
<td>Cardiac rhythm and contractility zone</td>
<td>11(60)</td>
</tr>
<tr>
<td>Ren</td>
<td>11(72)</td>
</tr>
<tr>
<td>Cor</td>
<td>12(75)</td>
</tr>
<tr>
<td>Brain</td>
<td>9(71)</td>
</tr>
<tr>
<td>Brain stem</td>
<td>10(65)</td>
</tr>
</tbody>
</table>
| Sympathetic | 6(60) | 8(20) | 17(67) | 14(33) | 17(33) | 14(3)
| Subhuman | 8(64) | 9(36) | 16(64) | 9(36) | 10(35) | 16(65) |
| Hypertension | 9(60) | 9(40) | 16(65) | 11(25) | 14(25) | 10(55) |
| Hypotensive | 7(60) | 11(25) | 16(80) | 11 (5) | 9(25) | 13(70) |
| Point of relaxation | 7(50) | 6(50) | 9(67) | 8(48) | 11(50) | 11(39) |
| Subcortex | 7(57) | 7(28) | 13(86) | - | - | 11(71) |
| Shenmen | 6(50) | 9(36) | 11(86) | - | 12(27) | 10(71) |
| Diaphragm | 6(43) | 10(36) | 12(64) | 6(29) | 9(36) | 16(50) |

* = p<0.05
- = Group of less than 3 patients
Brackets = Number of patients with the effect as a percent of the total group.

effectively: Subcortex, Brain stem, Ren, Cor, Point of relaxation, Hypertension, Ear apex and Groove for lowering blood pressure. The additional acupuncture points for this type of blood circulation might be the following: Hypotensive, Shenmen, Sympathetic and Cardiac rhythm and Contractility zone.

The hypokinetic group showed a quite different picture of haemodynamic changes:

Discussion

Our results show that acupuncture stimulation of different points on the ear in hypertensive patients induce specific haemodynamic changes related to the area of the ear stimulated. This in turn is related to the ear innervation. Branches of the trigeminal, facial, glossopharyngeal, vagus and cervical nerves are all present on the ear surface, which makes the ear a neurologically unique area of the human body.

Bearing in mind the neurophysiology of reflex reactions to the stimulation of peripheral afferents of the vagus, glossopharyngeal, trigeminal and superior cervical nerves, it is possible to suggest some general principles. The group of points that reduce blood pressure through lowering of the vascular tone in patients with the hypokinetic type of blood circulation is located: a) in the area innervated by the superior cervical nerves - points: Ear apex, Lesser occipital nerve, Groove for lowering blood pressure; b) in the area of afferentation of the vagus and glossopharyngeal nerves - Cor point; and c) in the area of mixed innervation of the above nerves - points: Ren and Cardiac rhythm and Contractility zone.

There are anatomical and functional relations between the vagus, glossopharyngeal and superior cervical nerves. So the vasodilation effect in response to acupuncture stimulation could well be acting via the spinal and bulbar tracts.

Neurophysiological research (16-19) has shown that baroreflex sympathetic inhibition causing systemic vasodilation acts mainly at an internervous level at the preganglionic sympathetic neurons in the lateral horn of the spinal cord. So one can suppose that vasodilation seen after stimulation of ear points located within the area of cervical nerve innervation is occurring by the same route of sympathetic innervation in the spinal cord.

When analysing the active mechanism of points located within the innervation zones of vagal and glossopharyngeal peripheral afferents, bear in mind
that they share the same central neuron representation at a bulbar level as the carotid and aortic sinus baroreceptors. This is why stimulation of these receptor fields can lead to a single, directed, effector reaction. Thus the hypotensive mechanism of acupuncture at this group of points should be similar to the baroreceptor response to an increase in arterial pressure.

Hypertensive patients with the hyperkinetic type of blood circulation respond to acupuncture at any ear point by reducing cardiac rate and stroke output. The most effective were the following points: Ear apex, Subcortex, Ren, Point of relaxation, Brain stem, Hypertension, Cor and Groove for lowering blood pressure. In patients with the hyperkinetic type of haemodynamics, increased cardiac activity is caused by an increase in sympathetic tone or, as some authors think, by a decrease in parasympathetic influence (20). It is possible that stimulation of peripheral afferent fibres of cranial nerves X, IX and V and superior cervical nerves (by which the above mentioned points are innervated) leads to restoration of normal cardiac control mechanisms with resultant decrease in minute volume.

There is a group of ear points that, irrespective of the patient's haemodynamic type, reduce blood pressure by primarily decreasing cardiac output. Most of them (Shenmen, Hypotensive, Subren, Diaphragm, Point of relaxation, Hypertension and Sympathetic) are located within the area innervated by the trigeminal nerve. The trigeminal is a powerful afferent nerve that produces a parasympathetic reaction directly or indirectly affecting cardiac activity. Stimulation of these points is not recommended for patients with eukinetic and hypokinetic types of blood circulation, the cardiac output of these patients being initially normal or decreased.

Thus, as a result of our work, we have managed to determine the most effective acupuncture points for each clinical haemodynamic variant of hypertensive disease and can recommend therapy with specific auricular acupuncture points for hypertensive patients of each initial type.

We have shown elsewhere (21) that this type-specific auricular acupuncture treatment is clinically effective in hypertensive disease, decreasing both systolic and diastolic blood pressure, increasing physical working capacity and allowing a reduction in drug consumption.

Prof P Ja Gaponjuk, Director Dr T Ja Sherkovina, Dept Head Scientific Medical Centre of Physiotherapy 14 I-ja Tverskaja-Jamskaja str, ap 5 125047, Moscow, Russia

References
The clinical and physiological foundation of auricular acupuncture therapy in patients with hypertensive disease
P Ja Gaponjuk and T Ju Sherkovina

doi: 10.1136/aim.12.1.2

Updated information and services can be found at:
http://aim.bmj.com/content/12/1/2

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:

To order reprints go to:
http://journals.bmj.com/content/subscribers

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/